Exports, Imports, and Earnings Inequality: Micro-Data and Macro-Lessons from Ecuador

How Does Trade Affect Earnings Inequality? This Paper

2 questions:

- Who is exposed to international trade, either through exports or imports?
- ➤ What is the *incidence* of differences in trade exposure on earnings inequality?
- 1. Sufficient statistics for quantifying distributional effects of trade in a country
 - > Characterize export and import channels of factor exposure to international trade
 - > **Domestic factor demand** controls the incidence of two exposure channels on domestic factor prices
 - > Not necessary to know anything else about the rest of the world
- 2. Measurement of exposure using administrative data from Ecuador:
 - \succ Customs + VAT + social security + ownership registry \Rightarrow Individual exposure to exports and imports (labor + capital)
- 3. Estimation of incidence using observed export and import shocks:
 - > Micro estimation of parameters: impact of trade shocks on factor spending and final sales across firms
 - > Macro test of model fit: Study impact of exposure to export and import shocks on relative prices across factors
- 4. Main Findings: Largest gains from trade at the top, mostly through import channel

Relationship to Existing Literature

➤ Inspired by original factor content approach:

- ➤ Deardorff & Staiger (1988), Borjas, Freeman & Katz (1992, 1997), Wood (1994), Krugman (2000), Leamer (2000)
- ➤ We like: Intuitive supply and demand framework, trade exposure measurement
- ➤ We improve: Robustness of theoretical foundations, granularity of the data fed into the analysis, tighter relationship between theory and data, estimation of incidence of observed trade shocks

➤ Related to recent empirical literature:

- ➤ Autor, Dorn, and Hanson (2013), Kovak (2013), Hummels et al. (2014), Pierce and Schott (2016)
- > We like: Use observed trade shocks to estimate incidence (across firms, industries, regions, education)
- ➤ We improve: Sufficient statistics in trade models, extrapolate from evidence based on observed shocks to recover overall distributional impact of trade

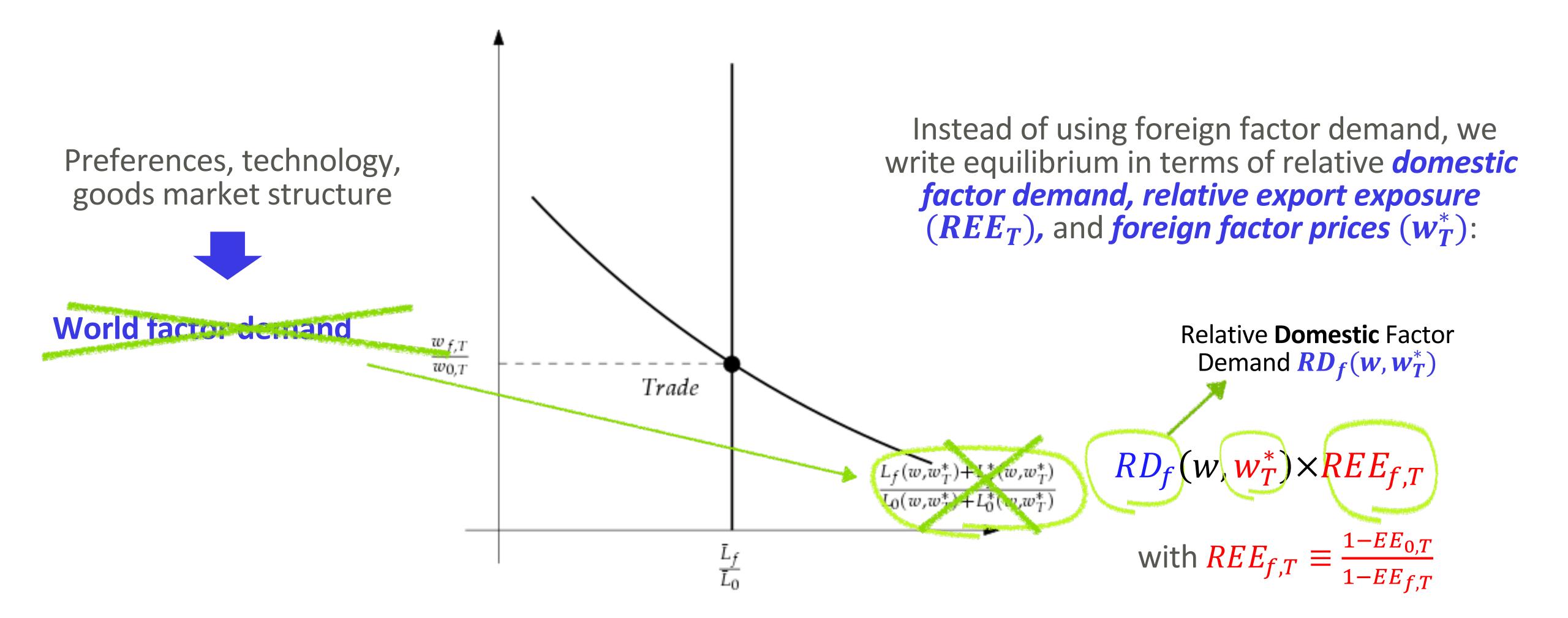
Theory

Environment

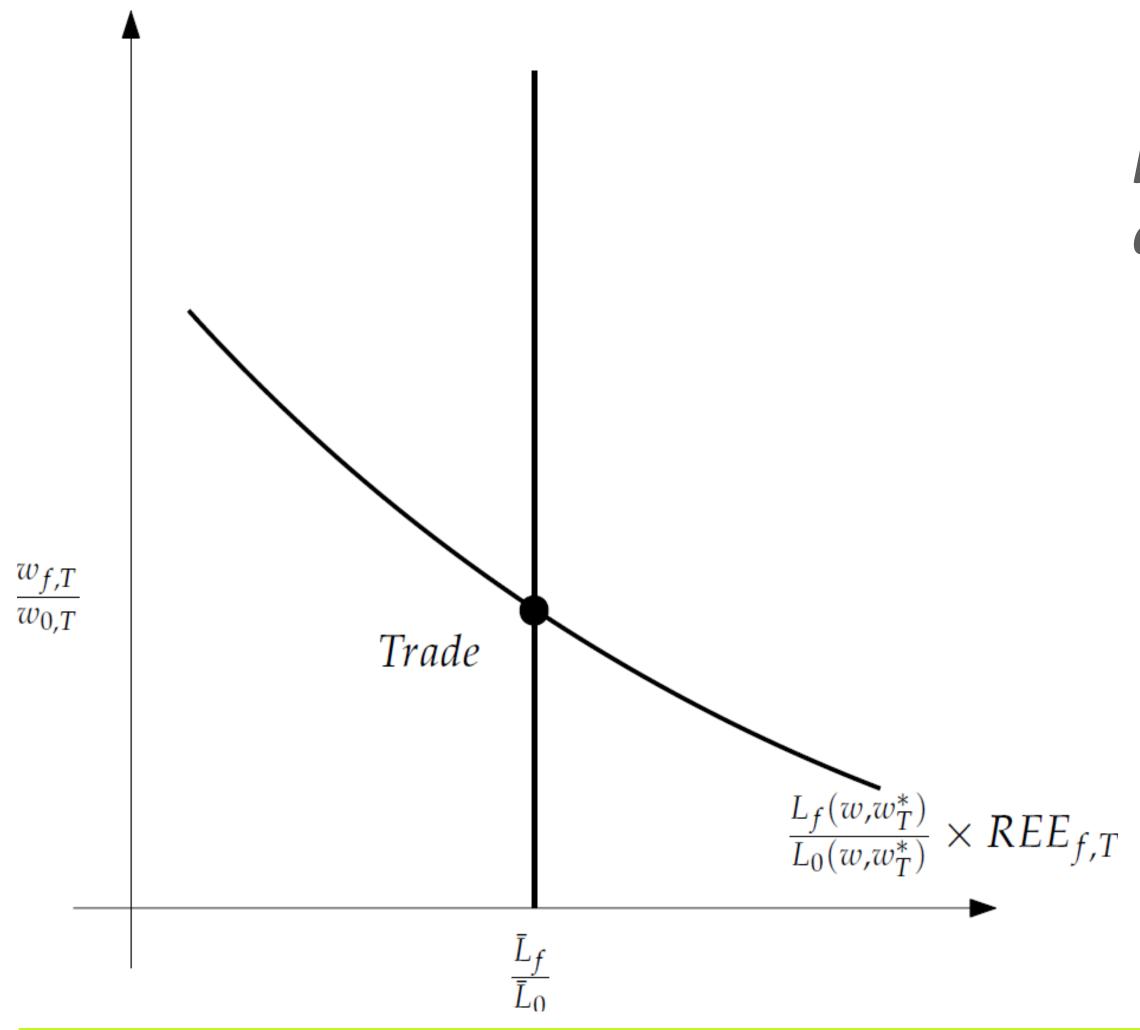
➤ Two countries: Home and Foreign

- ➤ Each country has an exogenous endowment of factors
 - ightharpoonup Domestic factors: $f \in F$ with endowment \overline{L}_f
 - \blacktriangleright Foreign factors: $f \in F^*$ with endowment \overline{L}_f^*
- ➤ Perfectly competitive factor markets
 - \triangleright Agents make decisions taking as given factor prices, w and w^*
- > We impose no restrictions on preferences, technology and good market structure

Factor Supply and Factor Demand


▶ Proposition 1. Consider perfectly competitive factor markets. There exist domestic and foreign factor demand functions, $L_f(w, w^*)$ and $L_f^*(w, w^*)$, such that equilibrium factor prices solve

$$\frac{L_f(w_T, w_T^*) + L_f^*(w_T, w_T^*)}{L_0(w_T, w_T^*) + L_0^*(w_T, w_T^*)} = \frac{\bar{L}_f}{\bar{L}_0} \quad \forall f \in F \cup F^*$$


- \blacktriangleright At equilibrium factor prices, $L_f^*(w_T, w_T^*)$ coincides with **Leontief's (1953)** factor content of exports
- ➤ We define export exposure as $EE_{f,T} \equiv \frac{L_f^*(w_T, w_T^*)}{L_f(w_T, w_T^*) + L_f^*(w_T, w_T^*)}$
- ightharpoonup Consider perfectly competitive factor markets. For any foreign factor prices w_T^* , there exists a relative domestic factor demand, $L_f(w, w_T^*)/L_0(w, w_T^*)$, s.t. domestic factor prices solve

$$\frac{L_f(w_T, w_T^*)}{L_0(w_T, w_T^*)} \frac{1 - EE_{0,T}}{1 - EE_{f,T}} = \frac{\bar{L}_f}{\bar{L}_0} \quad \forall f \in F$$

Factor Supply and Factor Demand

Exports, Imports, and Domestic factor prices

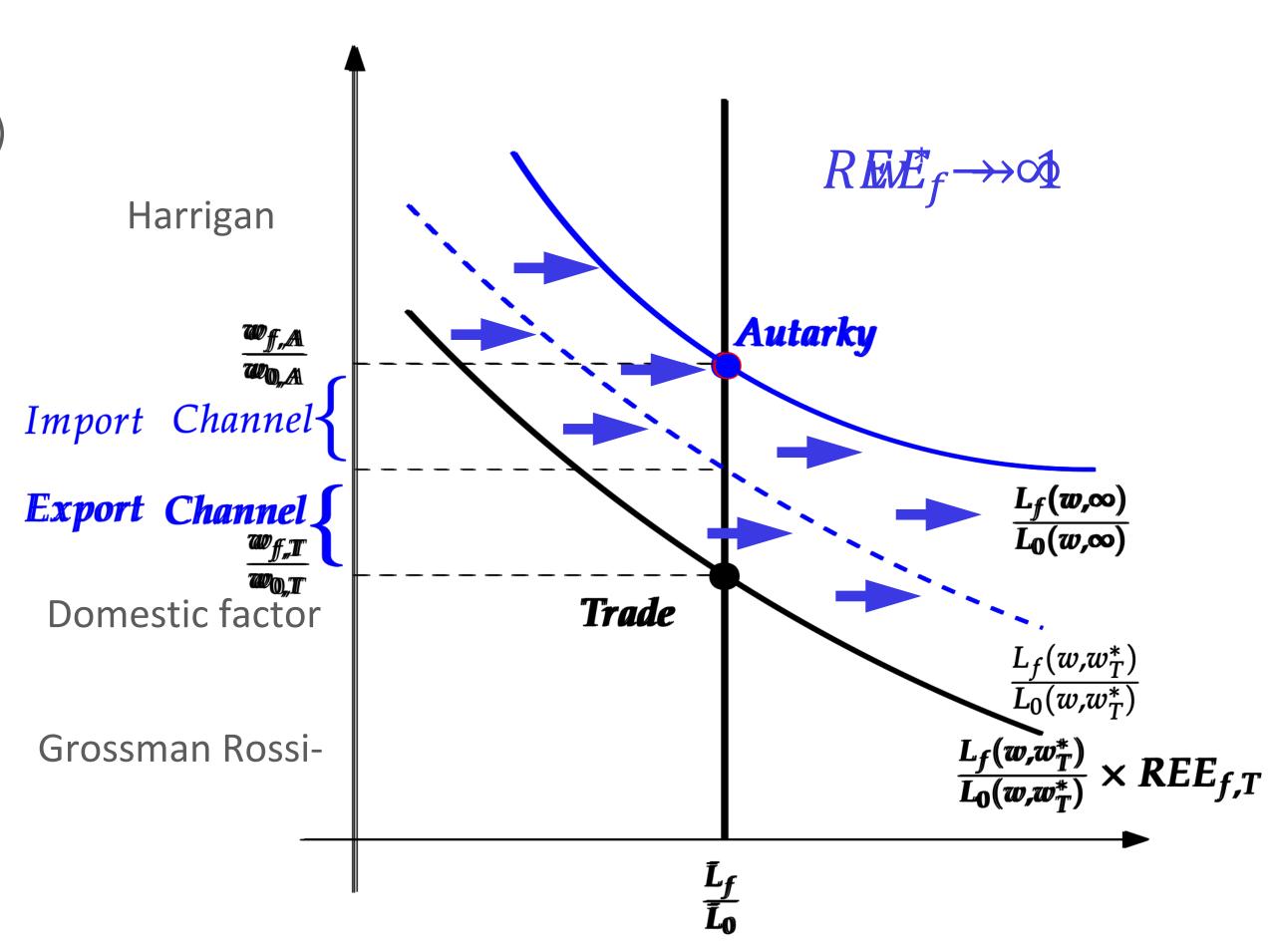
Factor prices as a function of relative export exposure and foreign factor prices:

$$w_{f,T} = RD_f^{-1} \left(\left\{ \frac{1}{REE_{g,T}} \frac{\overline{L}_g}{\overline{L}_0} \right\}_g, w_T^* \right)$$

- Not necessary to know anything about rest of world, even if country is large.
- > Testable macro predictions given knowledge of RD.

How do exports and imports affect inequality?

► Export Channel (≠ in export exposure):

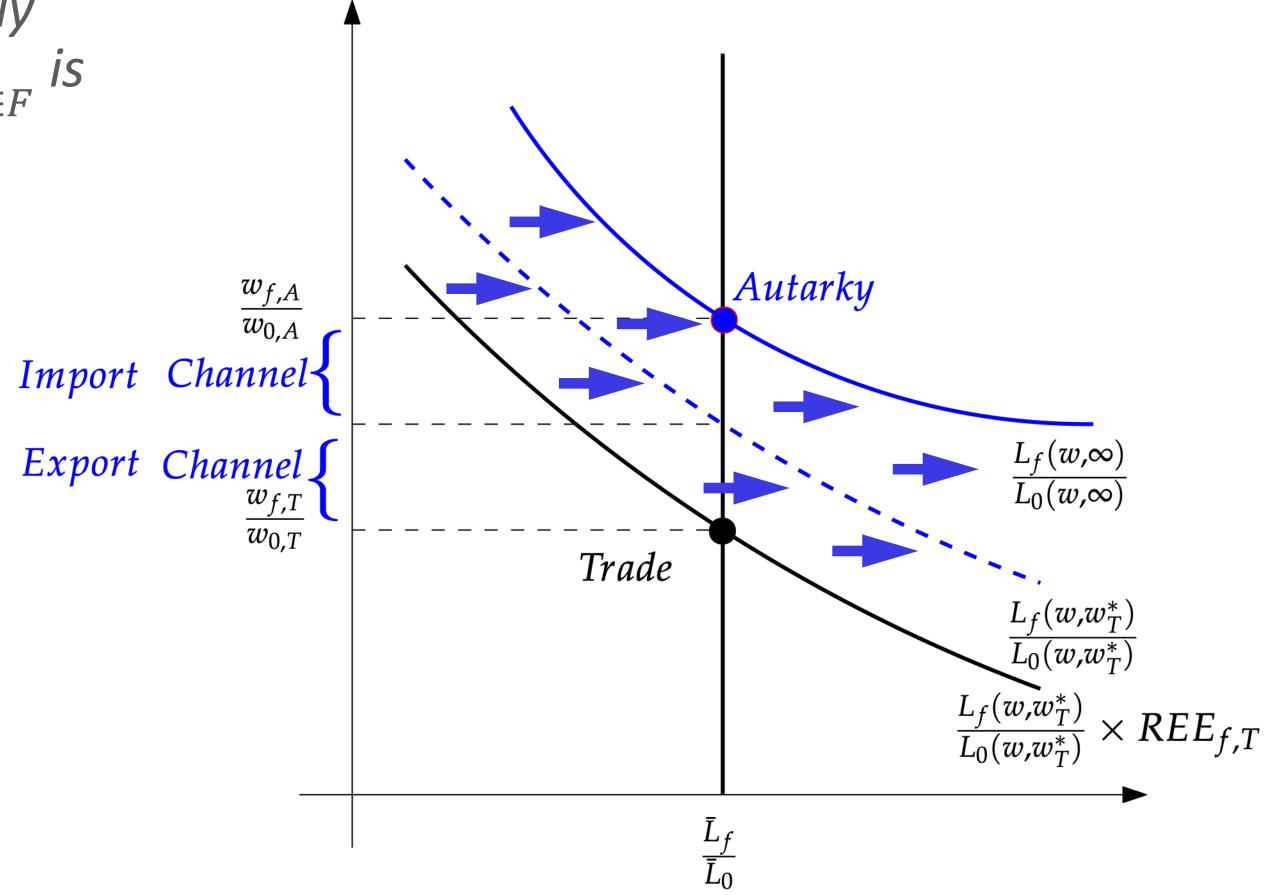

- Foreign factor demand \neq Domestic factor demand ($REE \neq 1$)
- Examples: Matsuyama '07, Verhoogen '08, Sampson '14, Reshef '16, Antras de Gortari Itskhoki '17

$$(\Delta \ln w)_{exports} = -\int_{(u=0,v=\ln w_T^*)}^{(u=\ln REE_T,v=\ln w_T^*)} \left[\frac{\partial \ln RD}{\partial \ln w}\right]^{-1} du$$

➤ Import Channel (≠ in import exposure):

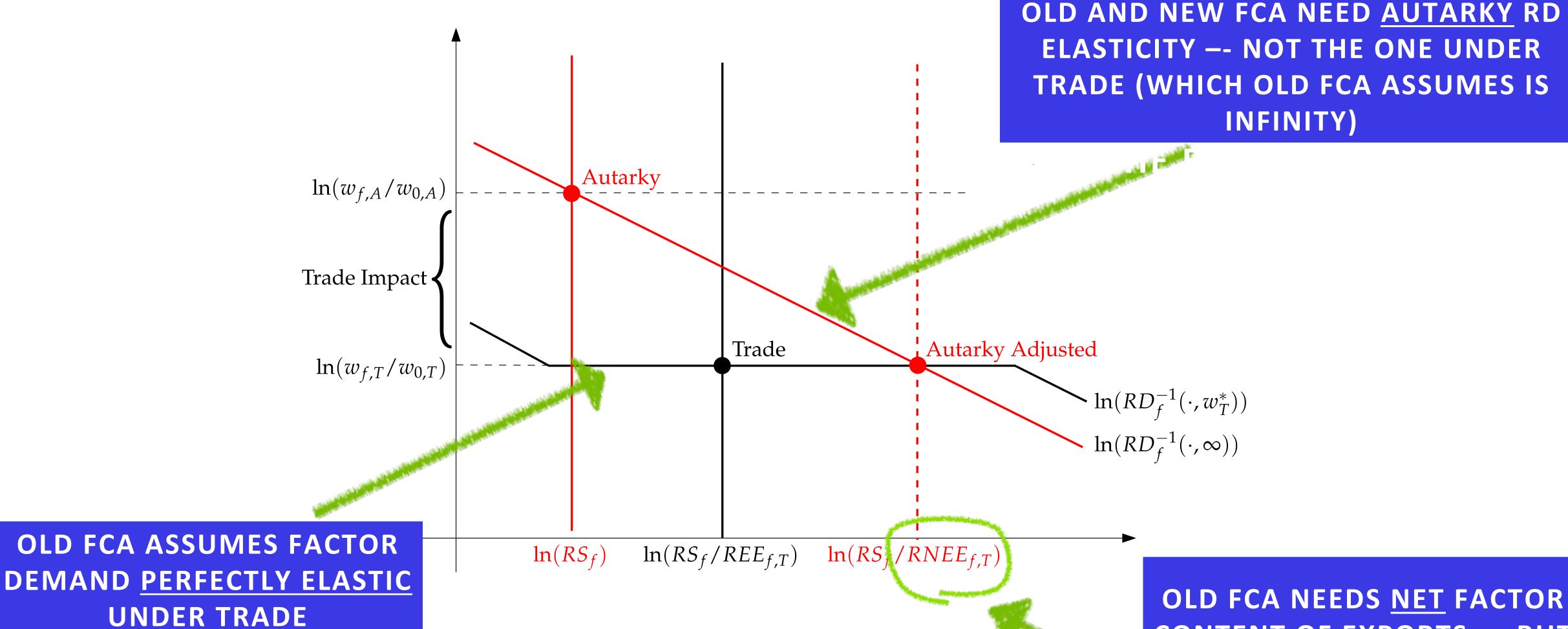
- ➤ Domestic factor demand with access to foreign factors \neq demand without $(d\ln RD/d\ln w^* \neq 0)$
- Examples: Stolper Samuelson '41, Feenstra Hanson '96, Hansberg '08, Burstein Cravino Vogel '13

$$(\Delta \ln w)_{imports} = -\int_{(u=0,v=\infty)}^{(u=0,v=\ln w_T^*)} \left[\frac{\partial \ln RD}{\partial \ln w}\right]^{-1} \left[\frac{\partial \ln RD}{\partial \ln w^*}\right] dv$$


Why does trade shift relative factor demand?

Prop 2. Suppose that $\ln RD$ (w, w^*) is continuously differentiable and $\{\partial \ln RD_f (w, w^*)/\partial \ln w_g\}_{f,g \in F}$ is invertible. Then:

$$(\Delta \ln w)_{trade} = (\Delta \ln w)_{exports} + (\Delta \ln w)_{imports}$$


$$(\Delta \ln w)_{exports} = -\int_{(u=0,v=\ln w_T^*)}^{(u=\ln REE_T,v=\ln w_T^*)} \left[\frac{\partial \ln RD}{\partial \ln w}\right]^{-1} du$$

$$(\Delta \ln w)_{imports} = -\int_{(u=0,v=\infty)}^{(u=0,v=\ln w_T^*)} \left[\frac{\partial \ln RD}{\partial \ln w}\right]^{-1} \left[\frac{\partial \ln RD}{\partial \ln w^*}\right] dv$$

Original factor content approach

Comparison to Original Factor Content Approach (FCA)

OLD FCA NEEDS <u>NET</u> FACTOR
CONTENT OF EXPORTS -- BUT
HOW TO MEASURE FACTOR
CONTENT OF IMPORTS?

Parametric Model of Domestic Factor Demand

- **Goal:** Simple model with both **export** and **import** channels
- **Preferences:** Representative household with nested CES preferences over domestic firms n in different sectors *k*:

$$U=\prod_{k\in\mathcal{K}}(U_k)^{\alpha_k},$$

$$U_k = (\sum_{n \in \mathcal{N}_k} \theta_{nc}^{\frac{1}{\sigma}} c_n^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$
 • Cobb-Douglas between sectors

- CES between firms within sectors (σ)
- Technology: Firms have a nested CES production function over domestic factors, goods produced by domestic firms, and goods produced by foreign firms

$$q_n = \varphi_n(l_n)^{\beta_n}(m_n)^{1-\beta_n},$$

$$m_n = (\prod_{r \in \mathcal{N}} m_{rn}^{\theta_{rn}})^{\Theta_n} (\prod_{r \in \mathcal{N}^*} m_{rn}^{\theta_{rn}^*})^{1-\Theta_n} \cdot \text{CES within domestic factors } (\eta)$$

$$\cdot \text{Cobb-Douglas otherwise}$$

$$l_n = (\sum_{f \in \mathcal{F}} \theta_{fn}^{\frac{1}{\eta}} l_{fn}^{\frac{\eta-1}{\eta}})^{\frac{\eta}{\eta-1}},$$

Perfect competition in good and factor markets

Export Exposure (EE_f)

$$\{EE_f\} = \frac{(\textit{Matrix of Factor shares}) \times (\textit{Leontief Inverse}) \times (\textit{Firm-level Gross Exports})}{\textit{Total Factor Earnings}}$$

- > Share of exports in total factor income
- ➤ Granular version of Leontief's factor content of exports (definition of factor + IO matrix)
- \blacktriangleright Model does not restrict *levels* of firm outside demand and supply (EE_f unrestricted)
- ightharpoonup Higher $EE_f \Rightarrow$ Higher relative factor demand \Rightarrow Higher relative price under trade

Import Exposure (IE_f) :

$$\frac{\partial \ln RD_f}{\partial \ln w^*} = (\sigma - 1)(IE_f - IE_0)$$

$$IE_f = \sum_{sectors \ firms: \ n} \left(\begin{array}{c} Share \ of \ firm \ n \ in \\ domestic \ demand \ of \ f \end{array} \right) \times \left(\begin{array}{c} Total \ import \ share \ of \ firm \ n \\ relative \ to \ its \ sector \ avg. \end{array} \right)$$

- Expenditure switching in response to cheaper foreign factors. It is proportional to cross-firm covariance between import cost share and factor employment for domestic use
- ightharpoonup {Total import share_n} = (Transpose Leontief Inverse) {Import share_n}
- \blacktriangleright If $\sigma > 1$, higher $IE^f \Rightarrow$ Lower relative factor demand \Rightarrow Lower relative price under trade

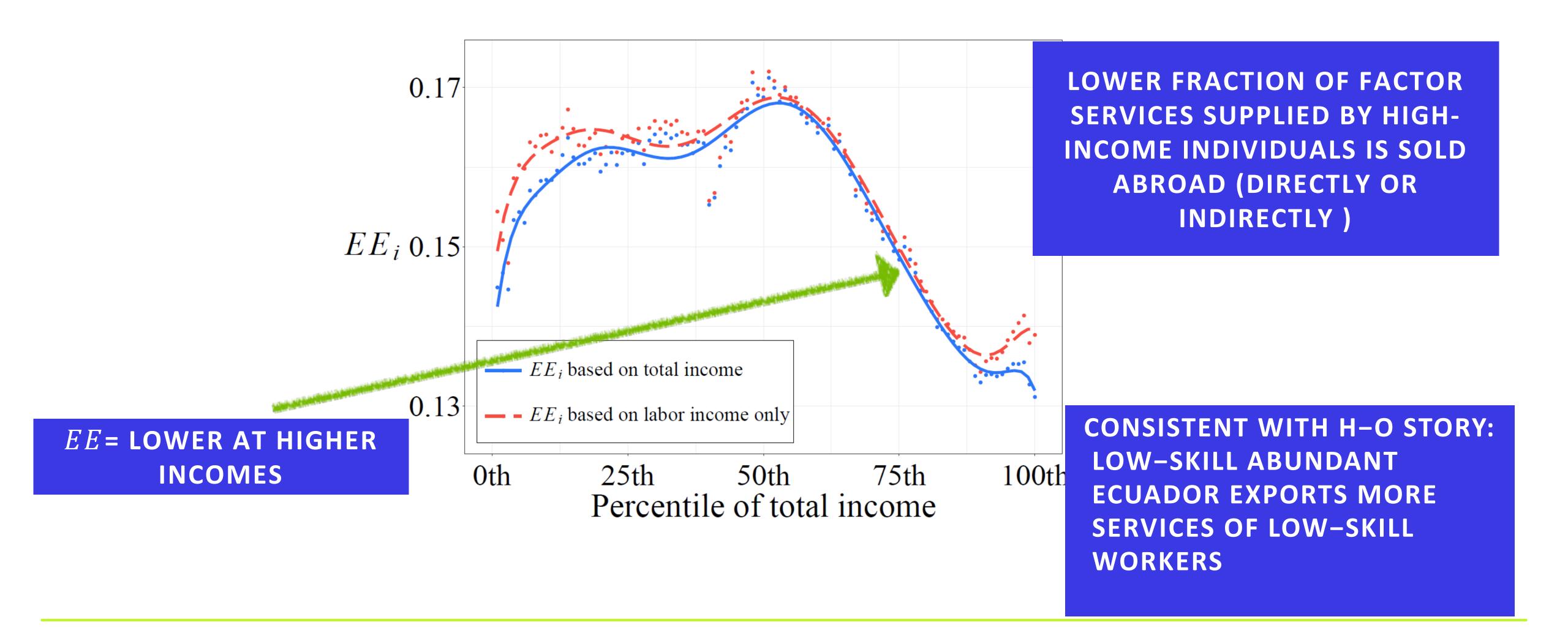
Exposure Measurement

Administrative Microdata in Ecuador (2009-2015)

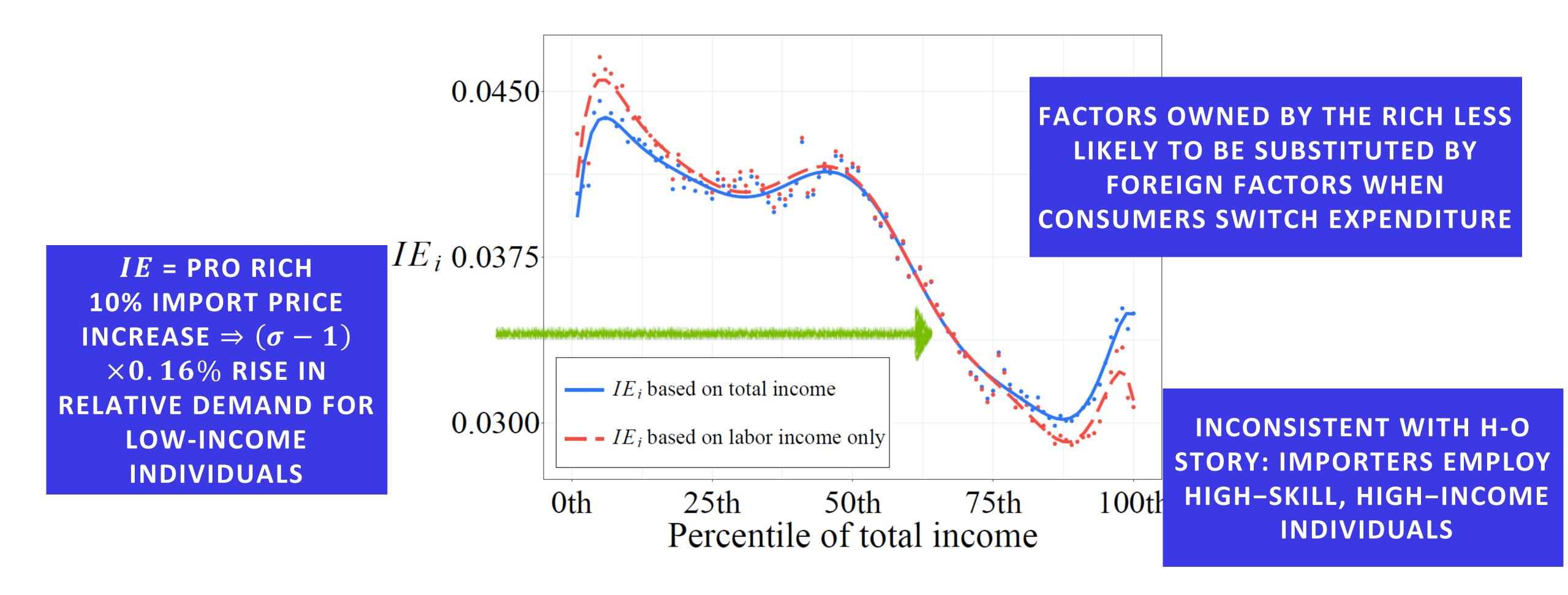
Workers

Firms

- Corporate Income Tax
 - Firm revenues, costs, profits
- VAT (matched firm-to-firm data)
 - Transactions between all formal firms
 - Transaction-level imports
 & exports by firm


- Social Security (matched employee-employer)
 - Income of all formal workers in the economy

Capital Owners


- Civil Registrar (matched firm-owner)
 - Share of each private firm owned by each taxpayer
 - Profits of firms = return on "capital" (self-employed treated as labor)

Factors = 73 Labor types (24 Province x 3 Education + Others) + 2 Capital types ("Oil" + "Non-Oil")

Export Exposure (EE_i) Across Income Distribution

Import Exposure (IE_i) Across Income Distribution

Micro Estimation

Ecuador's Factor Demand: Elasticity of substitution across factors (η)

> CES demand in firm n for factor f at year t:

$$\ln(factor\ spending)_{fn,t} = (1-\eta) \times \ln(factor\ price)_{f,t} + \zeta_{n,t} + \delta_f + (demand\ residual)_{fn,t}$$

- ➤ Fixed-effects: firm-year and factor
- ➤ Simultaneity bias in OLS ⇒ Shift-share IVs based on model-implied exposure

$$\hat{E}_{f,t} = \sum_{product:v} Export Exposure_{f,v} \times Export Shock_{v,t}$$

$$\hat{I}_{f,t} = \sum_{product:v} Import \, Exposure_{f,v} \times Import \, Shock_{v,t}$$

- ➤ Exposure: Same measure, but computed with firm-level trade by product (HS6) customs data
- ➤ Shocks: Global (log) export total value and import unit values (excluding Ecuador) BACI data
- > Identification: Global shocks uncorrelated with factor-firm demand shocks in Ecuador over time

Ecuador's Factor Demand: Elasticity of substitution across factors (η)

	Baseline (1)
Estimate of η	2.09 (0.35)
First-stage F statistic Factor-firm-year obs. Number of factors	10.1 625,024 75
Alternative:	-

Notes: Sample of incorporated firms with positive payments for more than one factor and more than one employee. Baseline specification uses a balanced panel of observations from 2009-2015, uses both export and import IVs, includes firm-year and factor fixed effects, and includes the extra controls comprising of year fixed effect interacted with the factor's exposure at t_0 to exports and imports. Observations are weighted by initial factor-firm payments (winsorized at the 95 percetile). Standard errors in parentheses are clustered by factor.

Ecuador's Factor Demand: Elasticity of substitution across factors (η)

	Baseline Alternative Specifica			fications				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Estimate of η	2.09 (0.35)	2.15 (0.65)	2.13 (0.48)	2.02 (0.73)	2.06 (0.32)	2.11 (0.33)	2.10 (0.59)	3.30 (2.52)
First-stage F statistic Factor-firm-year obs. Number of factors	10.1 625,024 75	5.0 625,024 75	19.3 625,024 75	3.0 625,024 75	10.3 512,915 75	8.6 861,747 75	18.3 536,795 75	5.2 446,169 75
Alternative:	-	Drop extra controls	Export IV only	Import IV only	Firms w/>5 workers	Un- balanced panel	Years 2010- 2015	Years 2011- 2015

Notes: Sample of incorporated firms with positive payments for more than one factor and more than one employee. Baseline specification uses a balanced panel of observations from 2009-2015, uses both export and import IVs, includes firm-year and factor fixed effects, and includes the extra controls comprising of year fixed effect interacted with the factor's exposure at t_0 to exports and imports. Observations are weighted by initial factor-firm payments (winsorized at the 95 percetile). Standard errors in parentheses are clustered by factor.

Ecuador's Factor Demand: Elasticity of substitution across firms (σ)

> CES demand in firm n for factor f at year t:

$$\ln(\text{final sales})_{n,t} = (1 - \sigma) \times \ln(\text{firm price})_{n,t} + \zeta_{k,t} + \delta_n + (\text{demand residual})_{n,t}$$

- ➤ Fixed-effects: sector-year and firm
- ➤ Firm price is not observed ⇒ Use model to back it out

$$\{\ln(\textit{final price})_{n,t}\} = (\textit{Transpose Leontief inverse})_t \times (\textit{firm factor shares})_t \times (\textit{In factor prices})_t + \{\rho_{n,t}\}$$

- ➤ We must account for domestic primary factors and foreign imported factors
- ➤ Simultaneity bias in OLS ⇒ Firm-level aggregation of factor shift-share IVs

$$\hat{E}_{n,t} = \sum_{factors:f} Cost \ share_{fn} \times \hat{E}_{f,t}$$

$$\hat{I}_{n,t} = \sum_{factors:f} Cost \ share_{fn} \times \hat{I}_{f,t}$$

$$\hat{w}_{n,t}^* = \sum_{products:v} Import \ Share_{vn} \times Import \ Shock_{v,t}$$

➤ Identification: Global shocks uncorrelated with firm demand shocks in Ecuador over time

Ecuador's Factor Demand: Elasticity of substitution across firms (σ)

	Baseline (1)
Estimate of σ	1.96 (0.57)
First-stage F statistic	13.1
Firm-year obs.	180,992
Number of firms	25,856
Alternative:	-
	-
	_

Notes: Sample of incorporated firms with positive final sales and more than one employee. Baseline specification uses a balanced panel of observations from 2009-2015, uses both export and import IVs, includes firm and sector-year fixed effects, and includes the extra controls comprising of year fixed effects interacted with the firm's cost share spent on primary factors and imports. Observations are weighted by initial firm final sales (weights winsorized at the 95 percetile). Standard errors in parentheses are clustered by firm.

Ecuador's Factor Demand: Elasticity of substitution across firms (σ)

	Baseline	Alternative Specifications						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Estimate of σ	1.96 (0.57)	1.98 (0.55)	1.76 (0.19)	1.91 (0.57)	1.84 (0.63)	2.86 (0.70)	1.48 (0.48)	1.51 (0.72)
First-stage F statistic Firm-year obs. Number of firms	13.1 180,992 25,856	14.2 180,992 25,856	1.1 180,992 25,856	19.4 180,992 25,856	8.6 120,050 17,150	15.0 279,183 47,413	10.4 155,136 25,856	4.2 129,280 25,856
Alternative:	-	Drop extra controls	Export IV only	Import IV only		Un- balanced panel		Years 2011- 2015

Notes: Sample of incorporated firms with positive final sales and more than one employee. Baseline specification uses a balanced panel of observations from 2009-2015, uses both export and import IVs, includes firm and sector-year fixed effects, and includes the extra controls comprising of year fixed effects interacted with the firm's cost share spent on primary factors and imports. Observations are weighted by initial firm final sales (weights winsorized at the 95 percetile). Standard errors in parentheses are clustered by firm.

Testing Domestic Factor Demand

Cobb-Douglas Assumptions: A Micro Test

- ➤ We use firm-level prices measured under the null of baseline model
- ➤ CES final demand for composite good of sector s

$$\ln(sector\ final\ sales)_{s,t} = \beta_{sector}\ln(sector\ price\ index)_{s,t} + \zeta_t + \delta_s + (demand\ residual)_{s,t}$$

- ➤ We use fixed-effects for years and sectors, and sector average of firm-level cost IVs
- \triangleright CES demand of firm n for imported and domestic inputs

$$\ln\left(\frac{import\,input\,share_{n,t}}{domestic\,input\,share_{n,t}}\right) = \beta_{import}\left(\frac{import\,price_{n,t}}{domestic\,input\,price_{n,t}}\right) + \zeta_t + \delta_n + (demand\,residual)_{n,t}$$

- ➤ We use fixed-effects for years and firms, and firm's import price IV
- \triangleright CES demand of firm n for inputs of different suppliers m

$$\ln(firm\ input\ share_{mn,t}) = \beta \ln(firm\ price)_{m,t} + \zeta_{n,t} + \delta_m + (demand\ residual)_{n,t}$$

➤ We use fixed-effects for buyer-year and suppliers, and the same firm-level cost IVs

Cannot reject Cobb-Douglas assumptions in the model

	Sensitivity of expe	Sensitivity of expenditure shares to relative prices across				
	sectors in final demand (1)	imported and domestic inputs (2)	domestic input suppliers (3)			
	-0.18 (0.32)	-0.25 (0.34)	0.06 (0.26)			
P-value ($H_0: \beta = 0$)	[0.57]	[0.47]	[0.80]			
First-stage F statistic Observations Clusters	14.0 448 64	71.3 19,575 2,840	7.4 1,476,055 33,392			

Predicted vs. Observed Changes in Factor Prices: A Macro Test

- ➤ Question: Is estimated factor demand model consistent with observed response of domestic factor prices to changes in foreign prices w_t^* and export exposure REE_t ?
- > Testable structural relation between factors prices, export exposure and import prices:

$$w_{f,T} = RD_f^{-1} \left(\left\{ \frac{1}{REE_{g,T}} \frac{\overline{L}_g}{\overline{L}_0} \right\}_g, w_T^* | (\hat{\eta}, \hat{\sigma}), W \right)$$

ightharpoonup We now know the relative demand using parameter estimates $(\hat{\eta}, \hat{\sigma})$ and micro-data on firms and individuals (W)

Predicted vs. Observed Changes in Factor Prices: A Macro Test

- ➤ Question: Is estimated factor demand model consistent with observed response of domestic factor prices to changes in foreign prices w_t^* and export exposure REE_t ?
- ➤ Model prediction (up to first-order):

$$\{\ln w_{f,t}\} = \left(-\left(\frac{\partial \ln RD}{\partial \ln w}\right)_{t-1}^{-1} \left[\left(\frac{\partial \ln RD}{\partial \ln w^*}\right)_{t-1} \left\{\Delta \ln w_{n,t}^*\right\} + \left\{\Delta \ln REE_{f,t}\right\}\right] + \left\{\ln w_{f,t-1}\right\} + \left\{\epsilon_{f,t}\right\}$$

PREDICTED RESPONSE TO OBSERVED EXPORT AND IMPORT SHOCKS

$$\equiv H_{t-1}(\Delta \ln w_t^*, \Delta \ln REE_t|(\hat{\eta}, \hat{\sigma}))$$

DOMESTIC SHOCKS

Micro to Macro Test:

$$\Delta \ln w_{f,t} = \beta H_{f,t-1}(\Delta \ln w_t^*, \Delta \ln REE_t | (\hat{\eta}, \hat{\sigma})) + \zeta_f + \epsilon_{f,t} \qquad \beta = 13$$

> IOPSPello Valused, tales imate (nor) element under same exclusion restriction

Predicted vs. Observed Changes in Factor Prices

		Δ Log (ob	served fac	ctor price)	
	(1)	(2)	(3)	(4)	(5)
Δ Log (predicted factor price) $\equiv H_{t-1}(\Delta \ln w_t^*, \Delta \ln REE_t (\hat{\eta}, \hat{\sigma}))$	1.07 (0.15)	1.59 (0.61)	1.24 (0.62)	1.01 (0.16)	0.85 (0.20)
P-value of $H_0: \beta_{fit} = 1$	[0.63]	[0.34]	[0.70]	[0.98]	[0.44]
First-stage F statistic Factor-year observations Number of factors	1844.0 525 75	198.1 525 75	182.9 525 75	294.852575	124.6 518 74
Includes year indicators times: EE_{f,t_0} and IE_{f,t_0} Capital factors indicator Province indicators Education level indicators					

NULL THAT

Counterfactuals

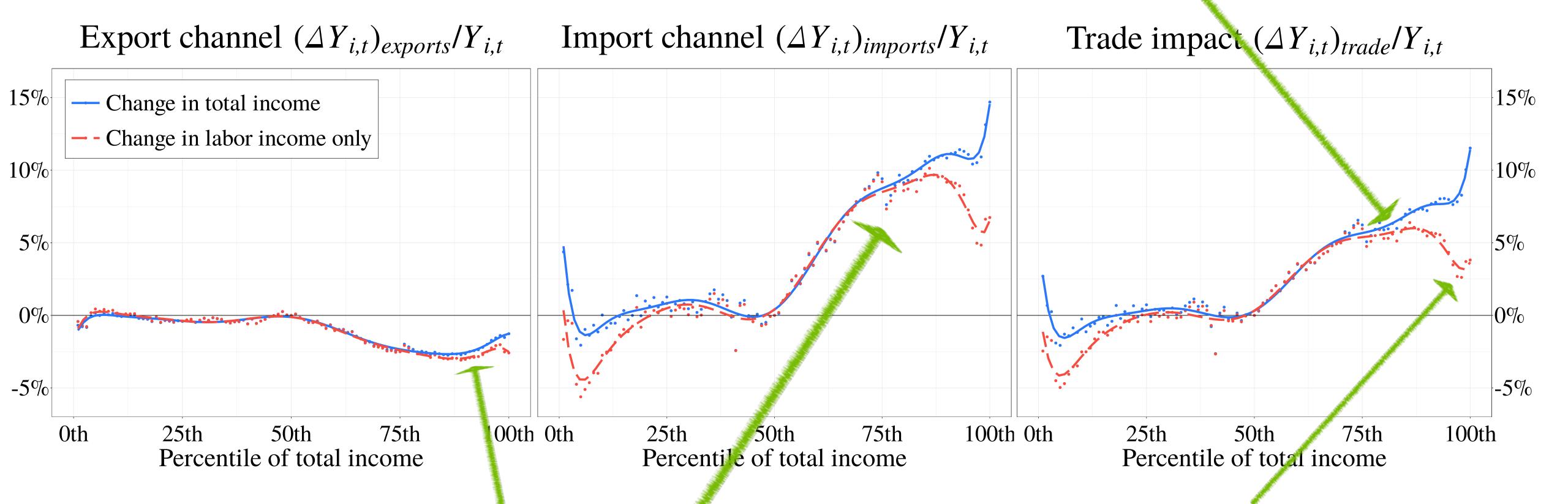
Distribution of the Gains from Trade

Observed Trade Equilibrium

$$w_{f,T} = RD_f^{-1} \left(\left\{ \frac{1}{REE_{g,T}} \frac{\overline{L}_g}{\overline{L}_0} \right\}_g, w_T^* | (\hat{\eta}, \hat{\sigma}) \right)$$

$$w_{f,A} = RD_f^{-1} \left(\left\{ \frac{\overline{L}_g}{\overline{L}_0} \right\}_g, \infty | (\hat{\eta}, \hat{\sigma}) \right)$$

$$REE_T \rightarrow 1$$


$$W_T^* \to \infty$$

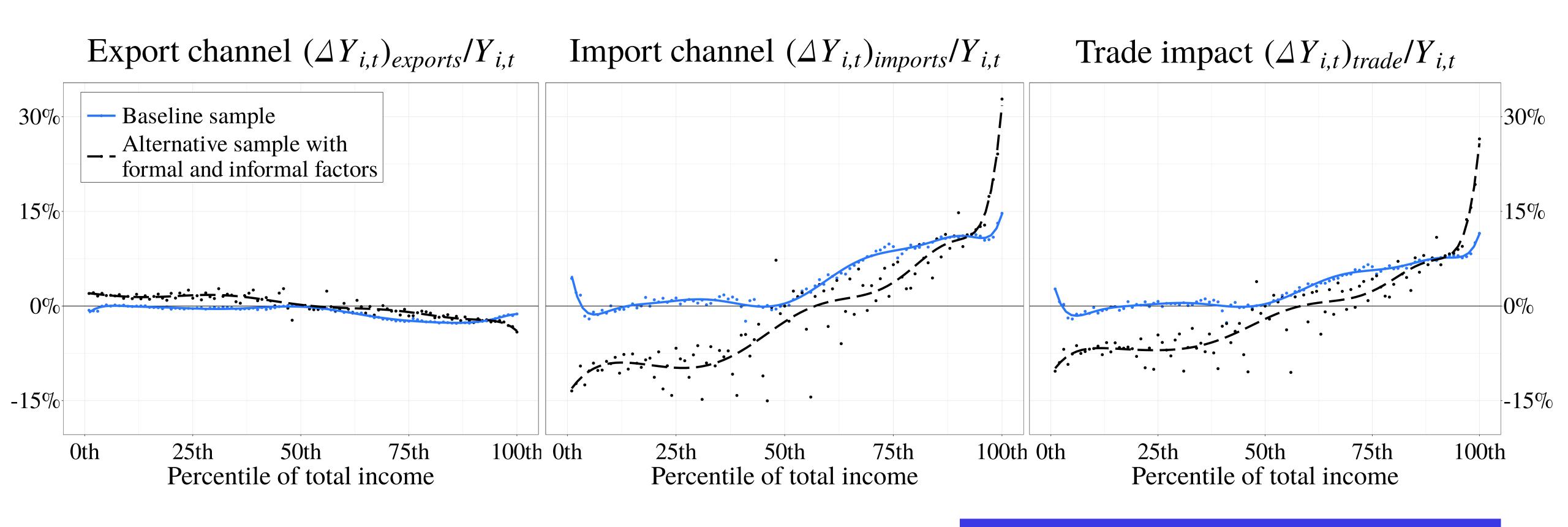
Counterfactual Autarky Equilibrium

$$w_{f,A} = RD_f^{-1} \left(\left\{ \frac{\overline{L}_g}{\overline{L}_0} \right\}_g, \infty | (\hat{\eta}, \hat{\sigma}) \right)$$

Distribution of the Gains from Trade

PRO-RICH OVERALL

BUT IMPORT CHANNEL PRO-POOK,


BUCH

TRADE THAN HIGH-INCOME

From Trade Exposure to Trade Impact

		Change in total income		Change in labor income		-
TWO MEASURES EXPOSURE HAS EXPECTED SIG	VE	Estimates (1)	Shapley % R ² (2)	Estimates (3)	Shapley % R ² (4)	
	EE	1.228 (0.001)	7.5%	1.320 (0.001)	8.1%	
R2 IS HIGH		-8.162 (0.002)	92.5%	-8.217 (0.001)	91.9%	
	R ² < Obs.	89.6% 2,612,867	100.0%	92.9% 2,413,683	100.0%	MOSTLY DRIVEN BY IMPORT EXPOSURE

Adding Informal Employment (ENIGHUR survey data)

SIMILAR EXPORT CHANNEL,
MAGNIFIED IMPORT CHANNEL

OVERALL EFFECT SIMILAR,
EXCEPT AT VERY TOP (DRIVEN
BY CAPITAL EARNINGS)

Changes in Inequality in a Closed Economy

	Actual change in open economy	Counterfactual change in closed economy
Δ ln (50-10 income ratio)	-0.134	-0.074
Δ ln (90-50 income ratio)	-0.185	-0.098
Δ ln (99-90 income ratio)	-0.046	-0.097

Notes: All calculations are based on augmented sample with informal earnings included. "50-10 income ratio" (etc.) calculated from the ratio of the income of the 50th-percentile earner to that of the 10th-percentile earner, separately in each year and model scenario.

Concluding Remarks

Summary

- How does trade affect earnings inequality?
 - Export channel \neq in export exposure $REE \neq 1$ simply measure REE
 - Import channel \neq in import exposure $\frac{d \ln RD}{d \ln w^*} \neq 0$ estimate $RD(w^*)$ flexibly (IE, η, σ)
- Estimates from admin. micro-data (formal sector firms, workers, owners) in Ecuador
 - Largest earnings gains from trade in the upper-half of the income distribution
 - Export channel pro poor, but regressive import channel dominates